Mining Frequent Itemsets over Uncertain Databases
نویسندگان
چکیده
In recent years, due to the wide applications of uncertain data, mining frequent itemsets over uncertain databases has attracted much attention. In uncertain databases, the support of an itemset is a random variable instead of a fixed occurrence counting of this itemset. Thus, unlike the corresponding problem in deterministic databases where the frequent itemset has a unique definition, the frequent itemset under uncertain environments has two different definitions so far. The first definition, referred as the expected support-based frequent itemset, employs the expectation of the support of an itemset to measure whether this itemset is frequent. The second definition, referred as the probabilistic frequent itemset, uses the probability of the support of an itemset to measure its frequency. Thus, existing work on mining frequent itemsets over uncertain databases is divided into two different groups and no study is conducted to comprehensively compare the two different definitions. In addition, since no uniform experimental platform exists, current solutions for the same definition even generate inconsistent results. In this paper, we firstly aim to clarify the relationship between the two different definitions. Through extensive experiments, we verify that the two definitions have a tight connection and can be unified together when the size of data is large enough. Secondly, we provide baseline implementations of eight existing representative algorithms and test their performances with uniform measures fairly. Finally, according to the fair tests over many different benchmark data sets, we clarify several existing inconsistent conclusions and discuss some new findings.
منابع مشابه
A New Algorithm for Mining Frequent Itemsets from Evidential Databases
Association rule mining (ARM) problem has been extensively tackled in the context of perfect data. However, real applications showed that data are often imperfect (incomplete and/or uncertain) which leads to the need of ARM algorithms that process imperfect databases. In this paper we propose a new algorithm for mining frequent itemsets from evidential databases. We introduce a new structure ca...
متن کاملProbabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases (Technical Report)
Frequent itemset mining in uncertain transaction databases semantically and computationally differs from traditional techniques applied on standard (certain) transaction databases. Uncertain transaction databases consist of sets of existentially uncertain items. The uncertainty of items in transactions makes traditional techniques inapplicable. In this paper, we tackle the problem of finding pr...
متن کاملProbabilistic Frequent Pattern Growth for Itemset Mining in Uncertain Databases
Frequent itemset mining in uncertain transaction databases semantically and computationally di ers from traditional techniques applied on standard (certain) transaction databases. Uncertain transaction databases consist of sets of existentially uncertain items. The uncertainty of items in transactions makes traditional techniques inapplicable. In this paper, we tackle the problem of nding proba...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کاملCLOLINK: An Adapted Algorithm for Mining Closed Frequent Itemsets
Mining of the complete set of frequent itemsets will lead to a huge number of itemsets. Fortunately, this problem can be reduced to the mining of closed frequent itemsets, which results in a much smaller number of itemsets. Methods for efficient mining of closed frequent itemsets have been studied extensively by many researchers using various strategies to prove their efficiencies such as Aprio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PVLDB
دوره 5 شماره
صفحات -
تاریخ انتشار 2012